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Abstract. We present a new method for 3D NLTE radiative transfer
in moving media. We use short characteristics to set up a system of
equations for each directed intensity. The entity of these systems is then
re-formulated as one system of equations for the angle-integrated mean
intensity. This system is solved with a fast, modern BiCGStab iterative
solver. We recently have implemented an adaptive grid on a cell by
cell basis. A major advantage of our approach is that convergence rates
barely depend on the spatial discretization. In the rate equations, lines
are treated by a 3D generalization of the Sobolev-approximation. The
solutions of the transfer and the rate equations are iteratively coupled.

1. Introduction

The last decade has seen an enormous development of non-Monte-Carlo multi-
dimensional radiative transfer, both with regard to techniques and range of
applications (e.g. Auer & Paletou 1994; Vath 1994; Fabiani Bendicho, Trujillo
Bueno, & Auer 1997; Folini 1998; Steinacker & Henning 1999; Busche & Hillier
2000; Dullemond & Turolla 2000; Richling et al. 2001; van Noort, Hubeny, &
Lanz 2002).

We here present a brief discussion of new features, advantages, and limita-
tions of our code TR3D. The technical basics of the code have been published
before (Folini 1998; Folini & Walder 1999a). TR3D solves the optically thick
NLTE radiative transfer problem for moving media in 3D. For a given 3D den-
sity, velocity, and temperature distribution, TR3D calculates the NLTE level
populations as well as the mean intensity at each spatial grid point.
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2. The approach

Our approach follows the idea of Turek (1994) and differs from other methods in
several ways. In particular, we do not solve for each directed intensity separately
and then iterate over all ordinate directions, but we solve for their combination
in the form of the mean intensity. We start from the radiative transfer equation,
which is the equivalent of the Boltzmann equation for photons, in the following
form:

nV.I(z,n,v) + x(z,n,v)I(z,n,v) = )\(w,u)/ﬂf(w,n',l/)dw' + f(z,n,v) (1)

Here, x, A, and f are the coefficients for total losses (absorption plus scattering),
scattering, and emission (atomic and external). I is the specific intensity, 2 the
unit sphere. Neglecting frequency coupling, we can omit in the following the
frequency index in the 1D discrete frequency space. Discretizing the 2D ordinate
space we obtain for each discrete ordinate direction m (m =1, ..., M):

M
n"VeI™ () + X" (@)™ (z) = Az) Y "™ () + f"(2). (2)
m=1

¢™ are the quadrature weights for the integral over Q. Discretizing 3D space,

and using short characteristics to express n™V,I™(z) , one further gets:

M
T I =Ly Y <IN+ £ (3)
m=1
Here the vector I} contains the specific intensity for direction m at each spatial
grid point, L, and f;* contain the scattering and emission coefficients. The
matrix 7}" describes the discretized transport term and the discretized loss
coefficient x™. Note that for each given discrete direction m the spatial grid
points can be numbered such that T}" is lower triangular. Next, we multiply the
equation by the inverse of T} (which can be done analytically as T} is lower
triangular), and apply a quadrature sum over all ordinate directions to the
equation. With the discrete mean intensity Jp, = Z%:l c™I}" we then obtain

M M
Jo = DT Lpdy+ Y (T T
m=1 m=1
= TpLpJy + Fp.
Taking all Jj terms to the left one finally obtains, with Ay =1 — Ty Ly,

ApJp = Fy, (4)

This linear system of equations we solve with a BiCGStab algorithm. Of the
matrix Ay the following can be said: Ay, is definite (in a mathematical sense) for
X > A > 0; A is not symmetric; Ay, is a full matrix; Ay, is given only implicitly;
based on the condition number of A} convergence of the iterative solution should
deteriorate as A — x and xyh — 1, where h is the spatial cell size. Note that
we cannot afford to build up the matrix Ay explicitly, as it has dimension n2_,_,
where n,04e is the number of spatial grid points. Instead, we construct on the

fly the parts of Aj we need, apply them to a vector, and throw them away again.



APS Conf. Ser. Style 3

3. Advantages of the approach

A main advantage of our approach is that the convergence rate of the solution
of the transfer equation depends only on x, A, and x/A, but essentially not on
the size of the spatial grid cells. This behaviour is in essence due to the fact that
the matrix Ay contains only the inverse of the derivative operator 77" and not
the operator itself. This property is particularly attractive with regard to the
use of adaptive grids in space. If T}® were used directly, convergence properties
would be dominated by the smallest cells. In this case, convergence can again
be improved by, for example, the use of multi-grid techniques (e.g. Steiner 1991;
Fabiani Bendicho, Trujillo Bueno, & Auer 1997). However, implementing an
efficient, non-linear multi-grid is rather demanding.

The comparatively moderate storage requirements we consider another ad-
vantage. Currently, we store the n, frequency dependent mean intensity as well
as the ny., NLTE level populations and the n;., LTE level populations at all
Tinode grid points. The LTE populations could be constructed on the fly, but
storing them allows for an efficient construction of x, A, and f. The work-
ing memory needed on top of these three large portions makes up only a few
more percent. In essence, our approach thus requires storing (1, + njey) * Nnode
variables.

As mentioned before, in our approach we have to solve only one linear
system of equations which contains the contributions from all discrete ordinate
directions. We do not know so far whether this results in an overall reduction
of the computational costs, compared to methods where one solves the transfer
equation for one individual ordinate after the other and iterates over the total
of ordinates. On the one hand, we have to solve only one linear system, instead
of solving one linear system per ordinate direction per global iteration step. On
the other hand, our linear system consists of a full matrix and is, therefore,
expensive to solve, whereas the linear system for a single ordinate direction is
sparse and can be solved rather cheaply.

Finally, although we currently use first order finite differences in our scheme
this is not mandatory. At least in principle, any other choice which fulfills
upwinding is possible.

4. Limitations of the approach

A restriction is the fact that our approach depends on the ability to make the
matrix 7}" lower triangular for a given direction m. First of all, this means
that only such discrete formulations of the transfer equation are allowed which
fulfill upwinding. Only points lying in the direction m where the specific inten-
sity is coming from can be considered. Second, the upwind discretization must
be such that the corresponding numbering of the grid points, which is what
finally ensures 73" to be lower triangular, can be done in an efficient way. For
example, a different numbering for each direction m would be too costly either
with regard to memory (store all these numberings) or CPU (construct them
whenever needed). In practice, this means that the grid must fulfill certain regu-
larity conditions. For an equidistant Cartesian grid, as an example, six different
numberings of the grid are sufficient.
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Another limitation with regard to discretization is that with each ordinate
in direction (¢, @) its counterpart in direction (-¢, -6) should also be used.
Otherwise, convergence can deteriorate. For the applications we so far have
primarily envisaged, namely wind-wind collision in binary star systems (Folini
& Walder 1999b), this is no severe restriction. In situations where photons
primarily propagate into a small solid angle segment this probably changes.

5. Conclusions

While TR3D also has its limitations, it has some definite advantages: near
independence of the convergence rate on the grid spacing, moderate storage re-
quirements, no need to iterate over ordinate directions. With regard to future
development, parallelization is a must, in view of both CPU and memory. 1003
grid points, 100 atomic levels, and 100 frequency points result already in roughly
2 GB of memory. A generalization to non-isotropic scattering is desirable for
many applications. While formally this should not be a problem with the current
approach, the practical realization may not be easy (Steinacker, private commu-
nication). Concerning adaptivity, TR3D already has some adaptivity (spatial
grid, some crude ordinate adaptivity). Yet more adaptivity is a must to save
memory and computer time. Desirable are, in a first step, different grids for
different frequencies, but in the long run also some kind of 'physical adaptivity’:
for a particular spatial and frequency range, solve only that part of the total set
of physical equations which is really relevant.
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